An Improved Bound on the List Size in the Guruswami-sudan Algorithm for Ag Codes

نویسندگان

  • NATHAN DRAKE
  • GRETCHEN L. MATTHEWS
چکیده

Given an algebraic geometry code CL(D,αP ), the GuruswamiSudan algorithm produces a list of all codewords in CL(D,αP ) within a specified distance of a received word. The initialization step in the algorithm involves parameter choices that bound the degree of the interpolating polynomial and hence the length of the list of codewords generated. In this paper, we use simple properties of discriminants of polynomials over finite fields to provide improved parameter choices for the Guruswami-Sudan list decoding algorithm for algebraic geometry codes. As a consequence, we obtain obtain a better bound on the list size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter choices and a better bound on the list size in the Guruswami-Sudan algorithm for algebraic geometry codes

Given an algebraic geometry code CL(D,αP ), the GuruswamiSudan algorithm produces a list of all codewords in CL(D,αP ) within a specified distance of a received word. The initialization step in the algorithm involves parameter choices that bound the degree of the interpolating polynomial and hence the length of the list of codewords generated. In this paper, we use simple properties of discrimi...

متن کامل

Multi-trial Guruswami-Sudan decoding for generalised Reed-Solomon codes

An iterated refinement procedure for the Guruswami–Sudan list decoding algorithm for Generalised Reed–Solomon codes based on Alekhnovich’s module minimisation is proposed. The method is parametrisable and allows variants of the usual list decoding approach. In particular, finding the list of closest codewords within an intermediate radius can be performed with improved average-case complexity w...

متن کامل

Bounds on the List-Decoding Radius of Reed--Solomon Codes

Techniques are presented for computing upper and lower bounds on the number of errors that can be corrected by list decoders for general block codes and speci cally for Reed Solomon RS codes The list decoder of Guruswami and Sudan implies such a lower bound referred to here as the GS bound for RS codes It is shown that this lower bound given by means of the code s length the minimum Hamming dis...

متن کامل

Fast Unique Decoding of Plane Ag Codes

An interpolation-based unique decoding algorithm of Algebraic Geometry codes was recently introduced. The algorithm iteratively computes the sent message through a majority voting procedure using the Gröbner bases of interpolation modules. We now combine the main idea of the Guruswami-Sudan list decoding with the algorithm, and thus obtain a hybrid unique decoding algorithm of plane AG codes, s...

متن کامل

Random linear binary codes have smaller list sizes than uniformly random binary codes

There has been a great deal of work establishing that random linear codes are as list-decodable as uniformly random codes, in the sense that a random linear binary code of rate $1 - H(p) - \epsilon$ is $(p,O(1/\epsilon))$-list-decodable. In this work, we show that in fact random linear binary codes are \em more \em list-decodable than uniformly random codes, in the sense that the constant in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007